Molecular Insight into the Interaction between Camptothecin and Acyclic Cucurbit[4]urils as Efficient Nanocontainers in Comparison with Cucurbit[7]uril: Molecular Docking and Molecular Dynamics Simulation.

JOURNAL OF CHEMICAL INFORMATION AND MODELING(2020)

引用 11|浏览7
暂无评分
摘要
Cucurbit[n]urils (CB[n], n = 5, 6, 7, 8, 10, 14) and their derivatives due to the hydrophobic cavities and polar carbonyl portals have been considerably explored for their potential uses as drug delivery systems. It is important to understand how these macrocyclic compounds interact with guests. Camptothecin (CPT), as a natural alkaloid, is a topoisomerase inhibitor with antitumor activity against breast, pancreas, and lung cancers. The application of this drug in cancer therapy is restricted due to its low aqueous solubility and high toxicity. Recently, the complex formation between the cucurbit[7]uril (CB[7])/acyclic cucurbit[4]uril (aCB[4]) nanocontainers and CPT have been evaluated to overcome the potential drawbacks of the related drug. Herein, using computational methods, we identified the interaction mechanism of CPT with CB[7]/aCB[4]s, which consist of benzene and naphthalene sidewalls (aCB[4](benzene) and aCB[4](naphthalene), respectively) since the experimental approaches have not completely provided information at the molecular level. Our molecular docking and molecular dynamics (MD) simulations show that CB[7] and its two acyclic derivatives form stable inclusion complexes with CPT especially through hydrophobic interactions. We also found that aCB[4]s with the aromatic sidewalls can attach to CPT through pi-pi interactions. This investigation highlights aCB[4]s due to the structural properties and flexible nature as better nanocontainers for controlled release delivery of pharmaceutical agents in comparison with the CB[7] nanocontainer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要