Multi-contact 4C: long-molecule sequencing of complex proximity ligation products to uncover local cooperative and competitive chromatin topologies.

NATURE PROTOCOLS(2020)

引用 21|浏览67
暂无评分
摘要
This protocol presents experimental and computational procedures for unbiased analysis of multi-way chromatin contacts at a selected genomic site. Multi-way contacts are captured by proximity ligation and detected using long-read sequencing. We present the experimental protocol and data analysis toolbox for multi-contact 4C (MC-4C), a new proximity ligation method tailored to study the higher-order chromatin contact patterns of selected genomic sites. Conventional chromatin conformation capture (3C) methods fragment proximity ligation products for efficient analysis of pairwise DNA contacts. By contrast, MC-4C is designed to preserve and collect large concatemers of proximity ligated fragments for long-molecule sequencing on an Oxford Nanopore or Pacific Biosciences platform. Each concatemer of proximity ligation products represents a snapshot topology of a different individual allele, revealing its multi-way chromatin interactions. By inverse PCR with primers specific for a fragment of interest (the viewpoint) and DNA size selection, sequencing is selectively targeted to thousands of different complex interactions containing this viewpoint. A tailored statistical analysis toolbox is able to generate background models and three-way interaction profiles from the same dataset. These profiles can be used to distinguish whether contacts between more than two regulatory sequences are mutually exclusive or, conversely, simultaneously occurring at chromatin hubs. The entire procedure can be completed in 2 w, and requires standard molecular biology and data analysis skills and equipment, plus access to a third-generation sequencing platform.
更多
查看译文
关键词
Chromatin structure,Data processing,Next-generation sequencing,Life Sciences,general,Biological Techniques,Analytical Chemistry,Microarrays,Computational Biology/Bioinformatics,Organic Chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要