ssDNA diffuses along replication protein A via a reptation mechanism.

NUCLEIC ACIDS RESEARCH(2020)

引用 18|浏览7
暂无评分
摘要
Replication protein A (RPA) plays a critical role in all eukaryotic DNA processing involving singlestranded DNA (ssDNA). Contrary to the notion that RPA provides solely inert protection to transiently formed ssDNA, the RPA-ssDNA complex acts as a dynamic DNA processing unit. Here, we studied the diffusion of RPA along 60 nt ssDNA using a coarse-grained model in which the ssDNA-RPA interface was modeled by both aromatic and electrostatic interactions. Our study provides direct evidence of bulge formation during the diffusion of ssDNA along RPA. Bulges can form at a few sites along the interface and store 1-7 nt of ssDNA whose release, upon bulge dissolution, leads to propagation of ssDNA diffusion. These findings thus support the reptation mechanism, which involves bulge formation linked to the aromatic interactions, whose short range nature reduces cooperativity in ssDNA diffusion. Greater cooperativity and a larger diffusion coefficient for ssDNA diffusion along RPA are observed for RPA variants with weaker aromatic interactions and for interfaces homogenously stabilized by electrostatic interactions. ssDNA propagation in the latter instance is characterized by lower probabilities of bulge formation; thus, it may fit the sliding-without-bulge model better than the reptation model. Thus, the reptation mechanism allows ssDNA mobility despite the extensive and high affinity interface of RPA with ssDNA. The short-range aromatic interactions support bulge formation while the long-range electrostatic interactions support the release of the stored excess ssDNA in the bulge and thus the overall diffusion.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要