Duo of (-)-epigallocatechin-3-gallate and doxorubicin loaded by polydopamine coating ZIF-8 in the regulation of autophagy for chemo-photothermal synergistic therapy.

BIOMATERIALS SCIENCE(2020)

引用 35|浏览17
暂无评分
摘要
To achieve highly systemic therapeutic efficacy, chemotherapy is combined with photothermal therapy for chemo-photothermal synergistic therapy; however, this strategy suffers from high toxicity and unsatisfactory sensitivity for cancer cells. Herein, we developed a pH- and photothermal-responsive zeolitic imidazolate framework (ZIF-8) compound for loading a dual-drug in the tumor site and improving their curative effects. Since autophagy always accompanies tumor progression and metastasis, there is an unmet need for an anticancer treatment related to the regulation of autophagy. Green tea polyphenols, namely, (-)-epigallocatechin-3-gallate (EGCG) and doxorubicin (DOX), both of which exhibit anticancer activity, were dual-loaded via polydopamine (PDA) coating ZIF-8 (EGCG@ZIF-PDA-PEG-DOX, EZPPD for short) through hierarchical self-assembly. PDA could transfer photothermal energy to increase the temperature under near-infrared (NIR) laser irradiation. Due to its pH-response, EZPPD released EGCG and DOX in the tumor microenvironment, wherein the temperature increased with the help of PDA and NIR laser irradiation. The duo of DOX and EGCG induced autophagic flux and accelerated the formation of autophagosomes. In a mouse HeLa tumor model, photothermal-chemotherapy could ablate the tumor with a significant synergistic effect and potentiate the anticancer efficacy. Thus, the results indicate that EZPPD renders the key traits of a clinically promising candidate to address the challenges associated with synergistic chemotherapy and photothermal utilization in antitumor therapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要