An Ancient and Eroded Social Supergene Is Widespread across Formica Ants.

Current biology : CB(2020)

引用 62|浏览6
暂无评分
摘要
Supergenes, clusters of tightly linked genes, play a key role in the evolution of complex adaptive variation [1, 2]. Although supergenes have been identified in many species, we lack an understanding of their origin, evolution, and persistence [3]. Here, we uncover 20-40 Ma of evolutionary history of a supergene associated with polymorphic social organization in Formica ants [4]. We show that five Formica species exhibit homologous divergent haplotypes spanning 11 Mbp on chromosome 3. Despite the supergene's size, only 142 single nucleotide polymorphisms (SNPs) consistently distinguish alternative supergene haplotypes across all five species. These conserved trans-species SNPs are localized in a small number of disjunct clusters distributed across the supergene. This unexpected pattern of divergence indicates that the Formica supergene does not follow standard models of sex chromosome evolution, in which distinct evolutionary strata reflect an expanding region of suppressed recombination [5]. We propose an alternative "eroded strata model" in which clusters of conserved trans-species SNPs represent functionally important areas maintained by selection in the face of rare recombination between ancestral haplotypes. The comparison of whole-genome sequences across 10 additional Formica species reveals that the most conserved region of the supergene contains a transcription factor essential for motor neuron development in Drosophila [6]. The discovery that a very small portion of this large and ancient supergene harbors conserved trans-species SNPs linked to colony social organization suggests that the ancestral haplotypes have been eroded by recombination, with selection preserving differentiation at one or a few genes generating alternative social organization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要