The Menadione-Mediated WST1 Reduction by Cultured Astrocytes Depends on NQO1 Activity and Cytosolic Glucose Metabolism

Neurochemical Research(2020)

引用 7|浏览1
暂无评分
摘要
The reduction of water-soluble tetrazolium salts (WSTs) is frequently used to determine the metabolic integrity and the viability of cultured cells. Recently, we have reported that the electron cycler menadione can efficiently connect intracellular oxidation reactions in cultured astrocytes with the extracellular reduction of WST1 and that this menadione cycling reaction involves an enzyme. The enzymatic reaction involved in the menadione-dependent WST1 reduction was found strongly enriched in the cytosolic fraction of cultured astrocytes and is able to efficiently use both NADH and NADPH as electron donors. In addition, the reaction was highly sensitive towards dicoumarol with K ic values in the low nanomolar range, suggesting that the NAD(P)H:quinone oxidoreductase 1 (NQO1) catalyzes the menadione-dependent WST1 reduction in astrocytes. Also, in intact astrocytes, dicoumarol inhibited the menadione-dependent WST1 reduction in a concentration-dependent manner with half-maximal inhibition observed at around 50 nM. Moreover, the menadione-dependent WST1 reduction by viable astrocytes was strongly affected by the availability of glucose. In the absence of glucose only residual WST1 reduction was observed, while a concentration-dependent increase in WST1 reduction was found during a 30 min incubation with maximal WST1 reduction already determined in the presence of 0.5 mM glucose. Mannose could fully replace glucose as substrate for astrocytic WST1 reduction, while other hexoses, lactate and the mitochondrial substrate β-hydroxybutyrate failed to provide electrons for the cell-dependent WST1 reduction. These results demonstrate that the menadione-mediated WST1 reduction involves cytosolic NQO1 activity and that this process is strongly affected by the availability of glucose as metabolic substrate.
更多
查看译文
关键词
Astrocytes,Glucose,Metabolism,NAD(P)H,WST1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要