Characterization and engineering of broadly reactive monoclonal antibody against hepatitis B virus X protein that blocks its interaction with DDB1

SCIENTIFIC REPORTS(2019)

引用 5|浏览11
暂无评分
摘要
Hepatitis B virus (HBV) X protein (HBx) plays diverse roles in both viral life cycle and HBV-related carcinogenesis. Its interaction with DNA damage-binding protein 1 (DDB1) was shown to be essential for engendering cellular conditions favorable for optimal viral transcription and replication. Previously, we described a mouse monoclonal antibody against HBx (anti-HBx 2A7) recognizing HBx encoded by representative strains from 7 of 8 known HBV genotypes. In this work, we further characterized 2A7 in order to explore its potential usefulness in HBx-targeting applications. We demonstrated that 2A7 recognizes a linear epitope mapped to L 89 PKVLHKR 96 on HBx, a segment that is highly conserved across genotypes and coincidentally overlaps with the DDB1-interacting segment. HBx-DDB1 binding could be inhibited by 2A7 in vitro , suggesting therapeutic potential. Nucleic acid and amino acid sequences of 2A7 were then obtained, which allowed construction of recombinant antibody and single chain variable fragments (scFv). 2A7-derived recombinant antibody and scFv recapitulate 2A7’s HBx-binding capacity and epitope specificity. We also reported preliminary results using cell-penetrating peptide for delivering 2A7 antibody across cell membrane to target intracellular HBx. Anti-HBx 2A7 and 2A7-derived scFv characterized here may give rise to novel HBx-targeting diagnostics and therapeutics for HBV- and HBx-related pathologies.
更多
查看译文
关键词
Applied immunology,Hepatitis B virus,Protein delivery,Virus–host interactions,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要