Correlating Gas Permeability and Young’s Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH(2020)

引用 25|浏览26
暂无评分
摘要
The relationship, during physical aging, between the transport properties and Young's modulus for films of polymers of intrinsic microporosity (PIM) was investigated using pure gas permeability and atomic force microscopy (AFM) in force spectroscopy mode. Excellent agreement of Young's modulus measured for the archetypal PIM-1 with values obtained by other techniques in the literature, confirms the suitability of AFM force spectroscopy for the rapid and convenient assessment of mechanical properties. Results from different polymers including PIM-1 and five ultrapermeable benzotriptycene-based PIMs provide direct evidence that size selectivity is strongly correlated to Young's modulus. In addition, film samples of one representative PIM (PIM-DTFM-BTrip) were subjected to both normal physical aging and to accelerated aging by thermal conditioning under vacuum for comparison. Accelerated aging resulted in a similar decrease in permeability and increase in Young's modulus as normal aging, however, significant differences suggest that thermally induced accelerated aging occurs throughout the bulk of the polymer film whereas normal aging occurs predominantly at the surface of the film. For all PIMs, the increased in film rigidity upon aging led to an increase in gas size selectivity.
更多
查看译文
关键词
intrinsic microporosity,atomic force microscopy,polymers,physical aging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要