Category-Sensitive Domain Adaptation for Land Cover Mapping in Aerial Scenes

REMOTE SENSING(2019)

引用 22|浏览2
暂无评分
摘要
Since manually labeling aerial images for pixel-level classification is expensive and time-consuming, developing strategies for land cover mapping without reference labels is essential and meaningful. As an efficient solution for this issue, domain adaptation has been widely utilized in numerous semantic labeling-based applications. However, current approaches generally pursue the marginal distribution alignment between the source and target features and ignore the category-level alignment. Therefore, directly applying them to land cover mapping leads to unsatisfactory performance in the target domain. In our research, to address this problem, we embed a geometry-consistent generative adversarial network (GcGAN) into a co-training adversarial learning network (CtALN), and then develop a category-sensitive domain adaptation (CsDA) method for land cover mapping using very-high-resolution (VHR) optical aerial images. The GcGAN aims to eliminate the domain discrepancies between labeled and unlabeled images while retaining their intrinsic land cover information by translating the features of the labeled images from the source domain to the target domain. Meanwhile, the CtALN aims to learn a semantic labeling model in the target domain with the translated features and corresponding reference labels. By training this hybrid framework, our method learns to distill knowledge from the source domain and transfers it to the target domain, while preserving not only global domain consistency, but also category-level consistency between labeled and unlabeled images in the feature space. The experimental results between two airborne benchmark datasets and the comparison with other state-of-the-art methods verify the robustness and superiority of our proposed CsDA.
更多
查看译文
关键词
domain adaptation,land cover mapping,aerial images,adversarial learning,geometry-consistency,co-training
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要