In Vivo Hyperglycaemia Exposure Elicits Distinct Period-Dependent Effects On Human Pancreatic Progenitor Differentiation, Conveyed By Oxidative Stress

ACTA PHYSIOLOGICA(2020)

引用 9|浏览49
暂无评分
摘要
Aim The loss of insulin-secreting beta-cells, ultimately characterizing most diabetes forms, demands the development of cell replacement therapies. The common endpoint for all ex vivo strategies is transplantation into diabetic patients. However, the effects of hyperglycaemia environment on the transplanted cells were not yet properly assessed. Thus, the main goal of this study was to characterize global effect of brief and prolonged in vivo hyperglycaemia exposure on the cell fate acquisition and maintenance of transplanted human pancreatic progenitors. Methods To rigorously study the effect of hyperglycaemia, in vitro differentiated human-induced pluripotent stem cells (hiPSC)-derived pancreatic progenitors were xenotransplanted in normoglycaemic and diabetic NSG rat insulin promoter (RIP)-diphtheria toxin receptor (DTR) mice. The transplants were retrieved after 1-week or 1-month exposure to overt hyperglycaemia and analysed by large-scale microscopy or global proteomics. For this study we pioneer the use of the NSG RIP-DTR system in the transplantation of hiPSC, making use of its highly reproducible specific and absolute beta-cell ablation property in the absence of inflammation or other organ toxicity. Results Here we show for the first time that besides the presence of an induced oxidative stress signature, the cell fate and proteome landscape response to hyperglycaemia was different, involving largely different mechanisms, according to the period spent in the hyperglycaemic environment. Surprisingly, brief hyperglycaemia exposure increased the bihormonal cell number by impeding the activity of specific islet lineage determinants. Moreover, it activated antioxidant and inflammation protection mechanisms signatures in the transplanted cells. In contrast, the prolonged exposure was characterized by decreased numbers of hormone + cells, low/absent detoxification signature, augmented production of oxygen reactive species and increased apoptosis. Conclusion Hyperglycaemia exposure induced distinct, period-dependent, negative effects on xenotransplanted human pancreatic progenitor, affecting their energy homeostasis, cell fate acquisition and survival.
更多
查看译文
关键词
differentiation, endocrine progenitors, human iPSCs, hyperglycaemia, RIP-DTR, xenotransplantation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要