Paracrine signalling from monocytes enables desirable extracellular matrix accumulation and temporally appropriate phenotype of vascular smooth muscle cell-like cells derived from adipose stromal cells.

Acta biomaterialia(2019)

引用 13|浏览13
暂无评分
摘要
In vascular tissue engineering, the ability to obtain a robust and safe vascular tissue cell source (e.g. vascular smooth muscle cells (VSMCs)) and to promote vascular tissue-specific extracellular matrix (ECM) protein production is critically important. Mature blood vessel-derived VSMCs are not practical for in vitro vascular tissue regeneration. The authors have conceived a strategy to differentiate adipose derived stromal cells (ASCs) into VSMC-like cells (ASC-VSMCs) that were similar to mature umbilical artery VSMCs at the transcriptional, protein and contraction function levels. Monocytes/macrophages are known as important regulators of the inflammation and regeneration processes within different tissue types of the body. However, our understanding of the potential interactions between specific tissue-like cells differentiated from stem/stromal cells (e.g. ASC-VSMCs) and monocytes/macrophages (cued by specific biomaterial scaffolds) is still limited. In this study, indirect and direct ASC-VSMC-monocyte co-cultures were constructed within a porous polyurethane scaffold (D-PHI) previously shown to have an immunomodulatory character. The effects of monocytes/macrophages on the cellularity (cell number detected with DNA quantification assay), ECM (glycosaminoglycan (GAG), collagen, and elastin) accumulation as well as the maintenance of contractile VSMC markers (calponin and smoothelin) of the ASC-VSMCs after a month of co-culture were investigated. It was found that monocyte paracrine signalling in D-PHI positively affected the cellularity and ECM accumulation of ASC-VSMCs in co-culture. Cause-effect relationships were also identified between the release of pro-inflammatory/anti-inflammatory factors (i.e. IL6, TGF-β1) in co-culture and the expression of contractile proteins (calponin and smoothelin) by ASC-VSMCs. This study demonstrated the importance of combining an immune cell strategy with stromal cell derived VSMCs (i.e. ASC-VSMCs) to achieve a practical vascular tissue engineering outcome. STATEMENT OF SIGNIFICANCE: Adipose stromal cell derived-vascular smooth muscle cells (ASC-VSMCs) are a promising cell source for vascular tissue engineering. Monocytes/monocyte derived macrophages can be harnessed as an immune-assisted strategy to promote vascular tissue regeneration. This study demonstrated that the co-culture of human ASC-VSMCs with monocytes significantly enhanced the cellularity and extracellular matrix (ECM) accumulation within anionic polyurethane (D-PHI) scaffolds, partially mediated by monocyte paracrine signalling mechanisms. In addition, specific VSMC contractile markers (calponin and smoothelin) were still present in ASC-VSMCs when the cells were exposed to monocytes for a month in vitro. This study corroborated the potential selection of ASC-VSMCs for in vitro engineering of vascular tissue in an immunomodulatory biomaterial scaffold (e.g. D-PHI) based co-culture system containing monocytes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要