Mesoporous Silica Nanoparticle–Based Combination of NQO1 Inhibitor and 5-Fluorouracil for Potent Antitumor Effect Against Head and Neck Squamous Cell Carcinoma (HNSCC)

Nanoscale Research Letters(2019)

引用 7|浏览11
暂无评分
摘要
Head and neck squamous cell carcinomas (HNSCC) are one of the deadliest forms of cancer, and 90% of its origin is from squamous cells. NAD(P)H:quinone oxidoreductase 1 (NQO1), an enzyme overexpressed in squamous cell carcinoma, plays an important role in proliferation and chemoresistance. The main aims were to study the inhibitory effect of ß-lapachone (ARQ761 in clinical form) in HNSCC and to study the combinational effect of 5-FU and ß-lap in improving the therapeutic efficacy in HNSCC. Lipid bilayer–assembled mesoporous silica nanoparticles loaded with 5-FU/ß-lap were prepared and studied for its physicochemical and biological properties. ß-lap showed a concentration-dependent inhibition of NQO1 enzyme activity in Cal33 cells. Notably, significant inhibitory effect was observed at a dose of 20–50 μg/ml of ß-lap. Combination of 5-FU+ß-lap resulted in lower cell viability; most notably, 5-FU/ß-lap-loaded mesoporous silica nanoparticles (FNQ-MSN) exhibited significantly lower cell viability compared with that of any of the individual drug or physical combinations. ß-lap resulted in a decrease in the protein band of NQO1 compared with control; however, most notable decrease in the NQO1 level was observed in the FNQ-MSN-treated cell group. FNQ-MSN resulted in more than 60% of cell apoptosis (early and late apoptosis) and predominant nuclear fragmentation of cancer cells indicating the superior anticancer effect of a carrier-based combination regimen. Notable decrease in tumor volume was observed with the physical mixture of 5-FU+ß-lap; however, combined treatment of carrier-based 5-FU and ß-lap (FNQ-MSN) significantly delayed the tumor growth and prolonged the survival of tumor-bearing xenograft mice. These findings suggest the potential of NQO1 inhibitor in enhancing the chemotherapeutic potential of 5-FU in the treatment of HNSCC.
更多
查看译文
关键词
Squamous cell carcinoma, NQO1 inhibitor, Lipid bilayer, Mesoporous silica nanoparticles, Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要