How the Mechanical Properties and Thickness of Glass Affect TPaD Performance

IEEE Transactions on Haptics(2020)

引用 1|浏览34
暂无评分
摘要
One well-known class of surface haptic devices that we have called Tactile Pattern Displays (TPaDs) uses ultrasonic transverse vibrations of a touch surface to modulate fingertip friction. This article addresses the power consumption of glass TPaDs, which is an important consideration in the context of mobile touchscreens. In particular, based on existing ultrasonic friction reduction models, we consider how the mechanical properties (density and Young's modulus) and thickness of commonly-used glass formulations affect TPaD performance, namely the relation between its friction reduction ability and its real power consumption. Experiments performed with eight types of TPaDs and an electromechanical model for the fingertip-TPaD system indicate: 1) TPaD performance decreases as glass thickness increases; 2) TPaD performance increases as the Young's modulus and density of glass decrease; and 3) real power consumption of a TPaD decreases as the contact force increases. Proper applications of these results can lead to significant increases in TPaD performance.
更多
查看译文
关键词
Fingers,Friction,Glass,Humans,Mechanical Phenomena,Touch,Touch Perception,Ultrasonic Waves,User-Computer Interface,Vibration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要