Deep sequence analysis of HIV adaptation following vertical transmission reveals the impact of immune pressure on the evolution of HIV.

PLOS PATHOGENS(2019)

引用 16|浏览39
暂无评分
摘要
Human immunodeficiency virus (HIV) can adapt to an individual's T cell immune response via genomic mutations that affect antigen recognition and impact disease outcome. These viral adaptations are specific to the host's human leucocyte antigen (HLA) alleles, as these molecules determine which peptides are presented to T cells. As HLA molecules are highly polymorphic at the population level, horizontal transmission events are most commonly between HLA-mismatched donor/recipient pairs, representing new immune selection environments for the transmitted virus. In this study, we utilised a deep sequencing approach to determine the HIV quasispecies in 26 mother-to-child transmission pairs where the potential for founder viruses to be pre-adapted is high due to the pairs being haplo-identical at HLA loci. This scenario allowed the assessment of specific HIV adaptations following transmission in either a non-selective immune environment, due to recipient HLA mismatched to original selecting HLA, or a selective immune environment, mediated by matched donor/recipient HLA. We show that the pattern of reversion or fixation of HIV adaptations following transmission provides insight into the replicative cost, and likely compensatory networks, associated with specific adaptations in vivo. Furthermore, although transmitted viruses were commonly heavily pre-adapted to the child's HLA genotype, we found evidence of de novo post-transmission adaptation, representing new epitopes targeted by the child's T cell response. High-resolution analysis of HIV adaptation is relevant when considering vaccine and cure strategies for individuals exposed to adapted viruses via transmission or reactivated from reservoirs. Author summary Highly mutable pathogens utilise genetic variations within T cell epitopes as a mechanism of immune escape (viral adaptation). The diversity of the human leucocyte antigen (HLA) molecules that present viral targets to T cells in human populations partially protects against rapid population-level accumulation of human immunodeficiency virus (HIV) adaptations through horizontal transmissions. In contrast, vertical transmissions occur between haplo-identical mother/child pairs, and potentially include adaptive changes through father-mother-child transmission, representing a pathway to complete pre-adaptation to HLA alleles in child hosts over only two transmission events. We utilised next-generation sequencing to examine HIV evolution in the unique setting of vertical HIV transmission. We predict the in vivo replicative cost and immune benefit of specific HIV adaptations that could be used to inform vaccine design and cure strategies to combat viral immune adaptation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要