Digital rolling circle amplification-based detection of Ebola and other tropical viruses.

The Journal of Molecular Diagnostics(2020)

引用 31|浏览4
暂无评分
摘要
Emerging tropical viruses have caused serious outbreaks during the recent years, such as Ebola virus (EBOV) in 2014 and the most recent in 2018 to 2019 in Congo. Thus, immediate diagnostic attention is demanded at the point of care in resource-limited settings, because the performance and the operational parameters of conventional EBOV testing are Limited. Especially, their sensitivity, specificity, and coverage of other tropical disease viruses make them unsuitable for diagnostic at the point of care. Here, a padlock probe (PLP)-based rolling circle amplification (RCA) method for the detection of EBOV is presented. For this, a set of PLPs, separately targeting the viral RNA and complementary RNA of all seven EBOV genes, was used in the RCA assay and validated on virus isolates from cell culture. The assay was then translated for testing clinical samples, and simultaneous detection of both EBOV RNA types was demonstrated. For increased sensitivity, the RCA products were enriched on a simple and pump-free microfluidic chip. Because PLPs and RCA are inherently multiplexable, we demonstrate the extension of the probe panel for the simultaneous detection of the tropical viruses Ebola, Zika, and Dengue. The demonstrated high specificity, sensitivity, and multiplexing capability in combination with the digital quantification rendered the assay a promising diagnostic tool toward tropical virus detection at the point of care.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要