Pressure-Induced Structural Phase Transition And Superconductivity In Nasn5

INORGANIC CHEMISTRY(2020)

引用 4|浏览10
暂无评分
摘要
The structural and electronic properties of the tin-rich compound NaSn5 were investigated under pressures of up to 10 GPa on the basis of the evolutionary algorithm (EA) technique coupled with first-principles total energy calculations. Upon compression, the known metallic tetragonal P (4) over bar2(1)m phase transforms into a metallic hexagonal P6/mmm phase at 1.85 GPa accompanied by an unusual change in the existing form of Sn atoms. The P6/mmm phase can be interpreted as a quasi-layered sandwich structure with two Sn layers and one sodium layer. The presence of softening phonon modes and the existence of Fermi pockets together with the obvious Fermi surface nesting indicate a strong electron-phonon coupling (EPC) and thus potential superconductivity in the P6/mmm phase. The strong EPC in the P6/mmm phase is mainly attributed to the phonons from Sn1 atoms together with electrons from the Sn1 p(y) and Sn1 p(z) states. The calculated superconducting critical temperature T-c of the P6/mmm phase is 5.91 K at designing intercalated compounds with superconductivity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要