Self-Learning Perfect Optical Chirality via a Deep Neural Network.

PHYSICAL REVIEW LETTERS(2019)

引用 68|浏览51
暂无评分
摘要
Optical chirality occurs when materials interact differently with light in a specific circular polarization state. Chiroptical phenomena inspire wide interdisciplinary investigations, which require advanced designs to reach strong chirality for practical applications. The development of artificial intelligence provides a new vision for the manipulation of light-matter interaction beyond the theoretical interpretation. Here, we report a self-consistent framework named the Bayesian optimization and convolutional neural network that combines Bayesian optimization and deep convolutional neural network algorithms to calculate and optimize optical properties of metallic nanostructures. Both electric-field distributions at the near field and reflection spectra at the far field are calculated and self-learned to suggest better structure designs and provide possible explanations for the origin of the optimized properties, which enables wide applications for future nanostructure analysis and design.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要