Influence of Long-Term Storage on Shape Memory Performance and Mechanical Behavior of Pre-stretched Commercial Poly(methyl methacrylate) (PMMA).

POLYMERS(2019)

引用 9|浏览4
暂无评分
摘要
In this paper, we experimentally investigate the influence of storage at 40 degrees C on the shape memory performance and mechanical behavior of a pre-stretched commercial poly(methyl methacrylate) (PMMA). This is to simulate the scenario in many applications. Although this is a very important topic in engineering practice, it has rarely been touched upon so far. The shape memory performance is characterized in terms of the shape fixity ratio (after up to one year of storage) and shape recovery ratio (upon heating to previous programming temperature). Programming in the mode of uniaxial tension is carried out at a temperature within the glass transition range to one of four prescribed programming strains (namely 10%, 20%, 40% and 80%). Also investigated is the residual strain after heating for shape recovery. The characterization of the mechanical behavior of programmed samples after storage for up to three months is via cyclic uniaxial tensile test. It is concluded that from an engineering application point view, for this particular PMMA, programming should be done at higher temperatures (i.e., above its T-g of 110 degrees C) in order to not only achieve reliable and better shape memory performance, but also minimize the influence of storage on the shape memory performance and mechanical behavior of the programmed material. This finding provides a useful guide for engineering applications of shape memory polymers, in particular based on the multiple-shape memory effect, temperature memory effect, and/or low temperature programming.
更多
查看译文
关键词
shape memory polymer,storage,shape memory performance,mechanical behavior,poly(methyl methacrylate),shape fixity ratio,shape recovery ratio
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要