A design principle of root length distribution of plants.

JOURNAL OF THE ROYAL SOCIETY INTERFACE(2019)

引用 4|浏览13
暂无评分
摘要
Shaping a plant root into an ideal structure for water capture is increasingly important for sustainable agriculture in the era of global climate change. Although the current genetic engineering of crops favours deep-reaching roots, here we show that nature has apparently adopted a different strategy of shaping roots. We construct a mathematical model for optimal root length distribution by considering that plants seek maximal water uptake at the metabolic expenses of root growth. Our theory finds a logarithmic decrease of root length density with depth to be most beneficial for efficient water uptake, which is supported by biological data as well as our experiments using root-mimicking network systems. Our study provides a tool to gauge the relative performance of root networks in transgenic plants engineered to endure a water deficit. Moreover, we lay a fundamental framework for mechanical understanding and design of water-absorptive growing networks, such as medical and industrial fluid transport systems and soft robots, which grow in porous media including soils and biotissues.
更多
查看译文
关键词
biological fluid dynamics,root length density,plant physics,flow in porous media
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要