Entropy-based formulation of thermodynamics in arbitrary quantum evolution

PHYSICAL REVIEW A(2022)

引用 11|浏览15
暂无评分
摘要
Given the evolution of an arbitrary open quantum system, we formulate a general and unambiguous method to separate the internal energy change of the system into an entropy-related contribution and a part causing no entropy change, identified as heat and work, respectively. We also demonstrate that heat and work admit geometric and dynamical descriptions by developing a universal dynamical equation for the given trajectory of the system. The dissipative and coherent parts of this equation contribute exclusively to heat and work, where the specific role of a work contribution from a counterdiabatic drive is underlined. Next we define an expression for the irreversible entropy production of the system which does not have explicit dependence on the properties of the ambient environment; rather, it depends on a set of the system???s observables excluding its Hamiltonian and is independent of internal energy change. We illustrate our results with three examples.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要