Resolving the Crab pulsar wind nebula at teraelectronvolt energies

H. Abdalla,F. Aharonian,Faical Ait Benkhali,E. O. Angüner,M. Arakawa,C. Arcaro,M. Backes,M. Barnard,Y. Becherini,J. Becker Tjus,D. Berge,K. Bernloehr,R. Blackwell, M. Böttcher,C. Boisson,J. Bolmont,S. Bonnefoy,P. Bordas Coma,J. Bregeon,F. Brun,P. Brun,M. Bryan,M. Büchele,T. Bulik,T. Bylund,M. Capasso,S. Caroff,A. Carosi,Sabrina Casanova,M. Cerruti,Nachiketa Chakraborty,R. C. G. Chaves,A. Chen,S. Colafrancesco, B. Condon,I. D. Davids, C. Deil,J. Devin,P. deWilt,L. Dirson,A. Djannati-Ataï,A. Dmytriiev,Axel Donath,V. Doroshenko,L. O'c. Drury,J. Dyks,K. Egberts,G. Emery,J. P. Ernenwein,S. Eschbach,S. Fegan,A. Fiasson,G. Fontaine,S. Funk,M. Füßling, S. Gabici,Y. A. Gallant, F. Gaté,G. Giavitto,D. Glawion,J. F. Glicenstein,D. Gottschall,M. H. Grondin,Joachim Hahn,M. Haupt, G. Heinzelmann,G. Henri,G. Hermann,J. A. Hinton,W. Hofmann,C. Hoischen,T. L. Holch,M. Holler,D. Horns,D. Huber,H. Iwasaki, A. Jacholkowska,M. Jamrozy,D. Jankowsky,F. Jankowsky, L. Jouvin,I. Jung-Richardt,M. A. Kastendieck,K. Katarzyński,M. Katsuragawa,U. Katz,D. Khangulyan,B. Khélifi,J. King, S. Klepser, W. Kluźniak,Nu. Komin, K. Kosack,M. Kraus,G. Lamanna,J. Lau,J. Lefaucheur, A. Lemière, M. Lemoine-Goumard,J. P. Lenain,E. Leser, T. Lohse,R López-Coto,I. Lypova,D. Malyshev, V. Mar,A. Marcowith,C. Mariaud,G. Martí-Devesa,Ramin Marx,G. Maurin,P. J. Meintjes,A. Mitchell,R. Moderski,M. Mohamed,L. Mohrmann,C. Moore,E. Moulin, T. Murach,S. Nakashima,M. de Naurois,H. Ndiyavala,F. Niederwanger,J. Niemiec, L. Oakes,P. O'Brien,H. Odaka,S. Ohm,M. Ostrowski,I. Oya,M. Panter,R. D. Parsons, C. Perennes,P. O. Petrucci,B. Peyaud,Q. Piel,S. Pita,V. Poireau,A. Priyana Noel,D. A. Prokhorov,H. Prokoph,G. Pühlhofer,M. Punch,A. Quirrenbach,S. Raab,R. Rauth, A. Reimer,O. Reimer,M. Renaud,F. Rieger,L. Rinchiuso,C. Romoli, G. Rowell,B. Rudak,E. Ruiz Velasco,V. Sahakian,S. Saito,D. A. Sanchez,A. Santangelo,M. Sasaki,R. Schlickeiser,F. Schüssler,A. Schulz, H. Schutte,U. Schwanke,S. Schwemmer,M. Seglar-Arroyo,M. Senniappan,A. S. Seyffert,N. Shafi,I. Shilon,K. Shiningayamwe,R. Simoni, A. Sinha,H. Sol,A. Specovius,M. Spir-Jacob, Ł. Stawarz,R. Steenkamp,C. Stegmann,C. Steppa,T. Takahashi,J. P. Tavernet,T. Tavernier,A. M. Taylor,R. Terrier,D. Tiziani, M. Tluczykont,C. Trichard,M. Tsirou,N. Tsuji,R. Tuffs,Y. Uchiyama,D. J. van der Walt,C. van Eldik,C. van Rensburg,B. van Soelen, G. Vasileiadis,J. Veh,C. Venter,P. Vincent,J. Vink, F. Voisin,H. J. Voelk,T. Vuillaume,Z. Wadiasingh,S. J. Wagner, R. M. Wagner,R. White,A. Wierzcholska,R. Yang, H. Yoneda,D. Zaborov,M. Zacharias, R. Zanin,A. A. Zdziarski, A. Zech, A. Ziegler, J. Zorn,N. Żywucka

NATURE ASTRONOMY(2020)

引用 24|浏览92
暂无评分
摘要
An angular extension at gamma-ray energies of 52 arcseconds is detected for the Crab nebula, revealing the emission region of the highest-energy gamma rays; simulations of the electromagnetic emission provide a non-trivial test of our understanding of particle acceleration in the Crab nebula. The Crab nebula is one of the most-studied cosmic particle accelerators, shining brightly across the entire electromagnetic spectrum up to very-high-energy gamma rays(1,2). It is known from observations in the radio to gamma-ray part of the spectrum that the nebula is powered by a pulsar, which converts most of its rotational energy losses into a highly relativistic outflow. This outflow powers a pulsar wind nebula, a region of up to ten light-years across, filled with relativistic electrons and positrons. These particles emit synchrotron photons in the ambient magnetic field and produce very-high-energy gamma rays by Compton up-scattering of ambient low-energy photons. Although the synchrotron morphology of the nebula is well established, it has not been known from which region the very-high-energy gamma rays are emitted(3-8). Here we report that the Crab nebula has an angular extension at gamma-ray energies of 52 arcseconds (assuming a Gaussian source width), much larger than at X-ray energies. This result closes a gap in the multi-wavelength coverage of the nebula, revealing the emission region of the highest-energy gamma rays. These gamma rays enable us to probe a previously inaccessible electron and positron energy range. We find that simulations of the electromagnetic emission reproduce our measurement, providing a non-trivial test of our understanding of particle acceleration in the Crab nebula.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要