Proof-of-Principle Experiment for Nanoparticle-Assisted Laser Wakefield Electron Acceleration

PHYSICAL REVIEW APPLIED(2019)

引用 16|浏览65
暂无评分
摘要
Laser electron accelerators have paved the way to build compact electron accelerators, but the quality of the electron beam should be improved to enable efficient use in various specialized applications. We demonstrate a proof-of-principle experiment for nanoparticle-assisted laser wakefield acceleration (NA LWFA) to improve the quality of the electron beam. Nanoparticles are generated through laser ablation of an aluminum target and introduced into a helium plasma to trigger the injection of electrons into the nonlinear plasma wake excited by 70 TW femtosecond laser pulses. We observe a significant enhancement of the electron beam energy, energy spread, and divergence compared with the case of self-injection. For instance, the best quality electron bunches present a maximum energy of up to 340 MeV, with a relative energy spread of 4.7% and a vertical divergence of 5.9 mrad. The initial results on NA LWFA are very promising and motivate further theoretical and experimental research into developing nanoparticle-assisted laser wakefield acceleration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要