Three Multiterminal Silicon Power Chips for an Optimized Monolithic Integration of Switching Cells: Validation on an H-Bridge Inverter

IEEE Transactions on Electron Devices(2019)

引用 1|浏览3
暂无评分
摘要
This article deals with the monolithic integration in silicon of a multiphase static power converter (dc/ac or ac/dc) for medium power applications, from few kilowatts to few tens of kilowatts with power devices’ blocking capability in the range of 600–1200 V. This article presents an original three-chip integration approach that combines both monolithic integration in silicon and printed circuit board (PCB) packaging process and takes advantage of both silicon-level technology and PCB-level technology within a limited and well-mastered complexity. The converter is integrated within only three new multiterminal power chips, which are then judiciously packaged on a PCB so as to minimize the switching cell stray inductance and the impact of voltage variations ( dv / dt ) across the common-mode stray capacitance of the assembly. The static and the dynamic operating modes of the proposed multiterminal power chips were validated using 2-D-Sentaurus TCAD simulations. The realized chips were packaged on a PCB to realize both classical and three-chip-based H-bridge inverters. First characterization results validate the electrical operating modes of the H-bridge inverter realized according to the three-chip approach.
更多
查看译文
关键词
Insulated gate bipolar transistors,Silicon,Monolithic integrated circuits,Inverters,Inductance,Insulation,Switches
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要