Multiplexing rhythmic information by spike timing dependent plasticity

PLOS COMPUTATIONAL BIOLOGY(2020)

引用 6|浏览10
暂无评分
摘要
Rhythmic activity has been associated with a wide range of cognitive processes including the encoding of sensory information, navigation, the transfer of information and others. Rhythmic activity in the brain has also been suggested to be used for multiplexing information. Multiplexing is the ability to transmit more than one signal via the same channel. Here we focus on frequency division multiplexing, in which different signals are transmitted in different frequency bands. Recent work showed that spike-timing-dependent plasticity (STDP) can facilitate the transfer of rhythmic activity downstream the information processing pathway. However, STDP has also been known to generate strong winner-take-all like competition between subgroups of correlated synaptic inputs. This competition between different rhythmicity channels, induced by STDP, may prevent the multiplexing of information. Thus, raising doubts whether STDP is consistent with the idea of multiplexing. This study explores whether STDP can facilitate the multiplexing of information across multiple frequency channels, and if so, under what conditions. We address this question in a modelling study, investigating the STDP dynamics of two populations synapsing downstream onto the same neuron in a feed-forward manner. Each population was assumed to exhibit rhythmic activity, albeit in a different frequency band. Our theory reveals that the winner-take-all like competitions between the two populations is limited, in the sense that different rhythmic populations will not necessarily fully suppress each other. Furthermore, we found that for a wide range of parameters, the network converged to a solution in which the downstream neuron responded to both rhythms. Yet, the synaptic weights themselves did not converge to a fixed point, rather remained dynamic. These findings imply that STDP can support the multiplexing of rhythmic information, and demonstrate how functionality (multiplexing of information) can be retained in the face of continuous remodeling of all the synaptic weights. The constraints on the types of STDP rules that can support multiplexing provide a natural test for our theory. Author summary Spike timing dependent plasticity (STDP) quantifies the change in the synaptic efficacy as a function of the temporal relationship between pre- and post-synaptic firing. STDP can be viewed as a microscopic unsupervised learning rule, and a wide range of such microscopic learning rules have been described empirically. Since there is no supervisor in unsupervised learning (which would provide with the system its goal), theoreticians have struggled with the question of the possible computational roles of the various STDP rules. Previous studies have focused on the possible contribution of STDP to the spontaneous development of spatial structure. However, the rich temporal repertoire of reported STDP rules has largely been ignored. Here we studied the contribution of STDP to the development of temporal structure. We show how STDP can shape synaptic efficacies to facilitate the transfer of rhythmic information downstream and to enable the multiplexing of information across different frequency channels. Our work emphasizes the relationship between the temporal structure of the STDP rule and the rhythmic activity it can support.
更多
查看译文
关键词
Hebbian learning,synaptic updating,WTA competition,multiplexing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要