Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility

NATURE MATERIALS(2020)

引用 191|浏览21
暂无评分
摘要
Metallic alloys containing multiple principal alloying elements have created a growing interest in exploring the property limits of metals and understanding the underlying physical mechanisms. Refractory high-entropy alloys have drawn particular attention due to their high melting points and excellent softening resistance, which are the two key requirements for high-temperature applications. Their compositional space is immense even after considering cost and recyclability restrictions, providing abundant design opportunities. However, refractory high-entropy alloys often exhibit apparent brittleness and oxidation susceptibility, which remain important challenges for their processing and application. Here, utilizing natural-mixing characteristics among refractory elements, we designed a Ti 38 V 15 Nb 23 Hf 24 refractory high-entropy alloy that exhibits >20% tensile ductility in the as-cast state, and physicochemical stability at high temperatures. Exploring the underlying deformation mechanisms across multiple length scales, we observe that a rare β′-phase plays an intriguing role in the mechanical response of this alloy. These results reveal the effectiveness of natural-mixing tendencies in expediting high-entropy alloy discovery.
更多
查看译文
关键词
Materials science,Mechanical properties,Metals and alloys,Materials Science,general,Optical and Electronic Materials,Biomaterials,Nanotechnology,Condensed Matter Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要