Constructing Minimal Perfect Hash Functions Using Sat Technology

THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2020)

引用 8|浏览0
暂无评分
摘要
Minimal perfect hash functions (MPHFs) are used to provide efficient access to values of large dictionaries (sets of key-value pairs). Discovering new algorithms for building MPHFs is an area of active research, especially from the perspective of storage efficiency. The information-theoretic limit for MPHFs is 1/ln 2 approximate to 1.44 bits per key. The current best practical algorithms range between 2 and 4 bits per key. In this article, we propose two SAT-based constructions of MPHFs. Our first construction yields MPHFs near the information-theoretic limit. For this construction, current state-of-the-art SAT solvers can handle instances where the dictionaries contain up to 40 elements, thereby outperforming the existing (brute-force) methods. Our second construction uses XOR-SAT filters to realize a practical approach with long-term storage of approximately 1.83 bits per key.
更多
查看译文
关键词
minimal perfect hash functions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要