Any-Precision Deep Neural Networks

Yu Haichao,Li Haoxiang, Shi Honghui,Huang Thomas S.,Hua Gang

THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2021)

引用 56|浏览368
暂无评分
摘要
We present any-precision deep neural networks (DNNs), which are trained with a new method that allows the learned DNNs to be flexible in numerical precision during inference. The same model in runtime can be flexibly and directly set to different bit-widths, by truncating the least significant bits, to support dynamic speed and accuracy trade-off. When all layers are set to low-bits, we show that the model achieved accuracy comparable to dedicated models trained at the same precision. This nice property facilitates flexible deployment of deep learning models in real-world applications, where in practice trade-offs between model accuracy and runtime efficiency are often sought. Previous literature presents solutions to train models at each individual fixed efficiency/accuracy trade-off point. But how to produce a model flexible in runtime precision is largely unexplored. When the demand of efficiency/accuracy trade-off varies from time to time or even dynamically changes in runtime, it is infeasible to re-train models accordingly, and the storage budget may forbid keeping multiple models. Our proposed framework achieves this flexibility without performance degradation. More importantly, we demonstrate that this achievement is agnostic to model architectures and applicable to multiple vision tasks. Our code is released at https://github.com/SHI-Labs/Any-Precision-DNNs.
更多
查看译文
关键词
neural networks,deep,any-precision
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要