Atomic Structures And Local Electronic Properties Of K- And Rh-Modified Ceria/Pt(111) Inverse Model Catalysts

JOURNAL OF CHEMICAL PHYSICS(2019)

引用 8|浏览8
暂无评分
摘要
Ceria has been widely applied as a support in heterogeneous catalysis due to its unique capability to store and release oxygen. As a typical inverse model catalyst, a ceria/Pt(111) system has attracted much attention due to its strong metal-oxide interaction. The structural and electronic properties of the ceria/Pt(111) system can be effectively modified by the introduction of alien K and Rh atoms. Here, the K- and Rh-modified ceria/Pt(111) inverse model catalysts have been investigated with high resolution scanning tunneling microscopy and apparent local work function measurement. The experimental results indicate that the K atoms prefer to occupy the top sites of the stoichiometric ceria, while the Rh atoms are prone to stay at the electron-rich ceria island edges. The K and Rh atoms act as an electron donor and acceptor on ceria/Pt(111), respectively. Such a study on the modification of the ceria-based catalysts should help understand strong metal-oxide interaction in heterogeneous catalysis at the atomic level. Published under license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要