Antitubercular Triazines: Optimization and Intrabacterial Metabolism.

Cell Chemical Biology(2020)

引用 23|浏览36
暂无评分
摘要
The triazine antitubercular JSF-2019 was of interest due to its in vitro efficacy and the nitro group shared with the clinically relevant delamanid and pretomanid. JSF-2019 undergoes activation requiring F420H2 and one or more nitroreductases in addition to Ddn. An intrabacterial drug metabolism (IBDM) platform was leveraged to demonstrate the system kinetics, evidencing formation of NO⋅ and a des-nitro metabolite. Structure-activity relationship studies focused on improving the solubility and mouse pharmacokinetic profile of JSF-2019 and culminated in JSF-2513, relying on the key introduction of a morpholine. Mechanistic studies with JSF-2019, JSF-2513, and other triazines stressed the significance of achieving potent in vitro efficacy via release of intrabacterial NO⋅ along with inhibition of InhA and, more generally, the FAS-II pathway. This study highlights the importance of probing IBDM and its potential to clarify mechanism of action, which in this case is a combination of NO⋅ release and InhA inhibition.
更多
查看译文
关键词
Mycobacterium tuberculosis,triazine,nitrofuran,intrabacterial drug metabolism,Bayesian models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要