Mitochondrial-Derived Peptide MOTS-c Attenuates Vascular Calcification and Secondary Myocardial Remodeling via Adenosine Monophosphate-Activated Protein Kinase Signaling Pathway.

CARDIORENAL MEDICINE(2020)

引用 39|浏览14
暂无评分
摘要
Introduction: Vascular calcification (VC) is a complex, regulated process involved in many disease entities. So far, there are no treatments to reverse it. Exploring novel strategies to prevent VC is important and necessary for VC-related disease intervention. Objective: In this study, we evaluated whether MOTS-c, a novel mitochondria-related 16-aa peptide, can reduce vitamin D3 and nicotine-induced VC in rats. Methods: Vitamin D3 plus nicotine-treated rats were injected with MOTS-c at a dose of 5 mg/kg once a day for 4 weeks. Blood pressure, heart rate, and body weight were measured, and echocardiography was performed. The expression of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and the angiotensin II type 1 (AT-1) and endothelin B (ET-B) receptors was determined by Western blot analysis. Results: Our results showed that MOTS-c treatment significantly attenuated VC. Furthermore, we found that the level of phosphorylated AMPK was increased and the expression levels of the AT-1 and ET-B receptors were decreased after MOTS-c treatment. Conclusions: Our findings provide evidence that MOTS-c may act as an inhibitor of VC by activating the AMPK signaling pathway and suppressing the expression of the AT-1 and ET-B receptors.
更多
查看译文
关键词
Adenosine monophosphate-activated protein kinase,Angiotensin II type 1,Endothelin B,MOTS-c,Rat model of vascular calcification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要