Identification of key microRNAs and hub genes in non-small-cell lung cancer using integrative bioinformatics and functional analyses.

JOURNAL OF CELLULAR BIOCHEMISTRY(2020)

引用 22|浏览0
暂无评分
摘要
Non-small-cell lung cancer (NSCLC) is an extremely debilitating respiratory malignancy. However, the pathogenesis of NSCLC has not been fully clarified. The main objective of our study was to identify potential microRNAs (miRNAs) and their regulatory mechanism in NSCLC. Using a systematic review, two NSCLC-associated miRNA data sets (GSE102286 and GSE56036) were obtained from Gene Expression Omnibus, and the differentially expressed miRNAs (DE-miRNAs) were accessed by GEO2R. Survival analysis of candidate DE-miRNAs was conducted using the Kaplan-Meier plotter database. To further illustrate the roles of DE-miRNAs in NSCLC, their potential target genes were predicted by miRNet and were annotated by the Database for Annotation, Visualization and Integrated Discovery (DAVID) program. Moreover, the protein-protein interaction (PPI) and miRNA-hub gene regulatory network were established using the STRING database and Cytoscape software. The function of DE-miRNAs in NSCLC cells was evaluated by transwell assay. Compared with normal tissues, a total of eight DE-miRNAs was commonly changed in two data sets. The survival analysis showed that six miRNAs (miR-21-5p, miR-31-5p, miR-708-5p, miR-30a-5p, miR-451a, and miR-126-3p) were significantly correlated with overall survival. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that target genes of upregulated miRNAs were enriched in pathways in cancer, microRNAs in cancer and proteoglycans in cancer, while the target genes of downregulated miRNAs were mainly associated with pathways in cancer, the PI3K-Akt signaling pathway and HTLV-I infection. Based on the miRNA-hub gene network and expression analysis, PTEN, EGFR, STAT3, RHOA, VEGFA, TP53, CTNNB1, and KRAS were identified as potential target genes. Furthermore, all six miRNAs exhibited significant effects on NSCLC cell invasion. These findings indicate that six DE-miRNAs and their target genes may play important roles in the pathogenesis of NSCLC, which will provide novel information for NSCLC treatments.
更多
查看译文
关键词
bioinformatics analysis,differentially expressed microRNAs,hub genes,non-small-cell lung cancer,pathways
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要