Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier.

OPTICS EXPRESS(2019)

引用 48|浏览42
暂无评分
摘要
AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) still suffer from poor quantum efficiency and low optical power. In this work, we proposed a DUV LED structure that includes five unique AlxGa1-xN quantum barriers (QBs); Each QB has a linear-increment of Al composition by 0.03 along the growth direction, unlike those commonly used flat QBs in conventional LEDs. As a result, the electron and hole concentration in the active region was considerably increased, attributing to the success of the electron blocking effect and enhanced hole injection efficiency. Importantly, the optical power was remarkably improved by 65.83% at the injection current of 60 mA. After in-depth device optimization, we found that a relatively thinner graded QB layer could further boost the LED performance because of the increased carrier concentrations and enhanced electron and hole wave function overlap in the QW, triggering a much higher radiative recombination efficiency. Hence, the proposed graded QBs, which have a continuous increment of Al composition along the growth direction, provide us with an effective solution to boost light output power in the pursuit of high-performance DUV emitters. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要