Classical nucleation theory predicts the shape of the nucleus in homogeneous solidification.

JOURNAL OF CHEMICAL PHYSICS(2020)

引用 6|浏览0
暂无评分
摘要
Macroscopic models of nucleation provide powerful tools for understanding activated phase transition processes. These models do not provide atomistic insights and can thus sometimes lack material-specific descriptions. Here, we provide a comprehensive framework for constructing a continuum picture from an atomistic simulation of homogeneous nucleation. We use this framework to determine the equilibrium shape of the solid nucleus that forms inside bulk liquid for a Lennard-Jones potential. From this shape, we then extract the anisotropy of the solid-liquid interfacial free energy, by performing a reverse Wulff construction in the space of spherical harmonic expansions. We find that the shape of the nucleus is nearly spherical and that its anisotropy can be perfectly described using classical models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要