Quantum control of excitons for reversible heat transfer

COMMUNICATIONS PHYSICS(2019)

引用 8|浏览0
暂无评分
摘要
Lasers, photovoltaics, and thermoelectrically-pumped light emitting diodes are thermodynamic machines which use excitons (electron-hole pairs) as the working medium. The heat transfers in such devices are highly irreversible, leading to low efficiencies. Here we predict that reversible heat transfers between a quantum-dot exciton and its phonon environment can be induced by laser pulses. We calculate the heat transfer when a quantum-dot exciton is driven by a chirped laser pulse. The reversibility of this heat transfer is quantified by the efficiency of a heat engine in which it forms the hot stroke, which we predict to reach 95% of the Carnot limit. This performance is achieved by using the time-dependent laser-dressing of the exciton to control the heat current and exciton temperature. We conclude that reversible heat transfers can be achieved in excitonic thermal machines, allowing substantial improvements in their efficiency.
更多
查看译文
关键词
Quantum dots,Theoretical physics,Thermodynamics,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要