B 80 Fullerene: A Promising Metal-Free Photocatalystfor Efficient Conversion of CO 2 to HCOOH

JOURNAL OF PHYSICAL CHEMISTRY C(2019)

引用 19|浏览3
暂无评分
摘要
Developing photocatalysts with high efficiency and selectivity for CO2 reduction is essential in the sight of both energy and environment. Through comprehensive density functional theory calculations, we have found that B-80 fullerene can be used as an excellent metal-free photocatalyst for reducing CO2 to value-added chemicals in this report. Our results reveal that electron-deficient boron fullerene can effectively activate CO2 (Lewis acid) through Lewis acid-base interactions on the three basic sites of B-80 (B-80 is an amphoteric molecule). The charge density difference analysis indicates that there are significant charge transfers between CO2 and B-80 fullerene on the adsorption sites, which are responsible for the activations of CO2. On the basis of calculating the adsorption energies of the possible products (CO, HCOOH, CH2O, CH3OH, and CH4) on B-80 fullerene and the possible reaction pathways producing these products, the B-80 fullerene shows high efficiency and selectivity for producing HCOOH. The minimum vertical bar U-lim vertical bar (0.18 V) of the reaction pathway to produce HCOOH and weaker binding of HCOOH on B-80 fullerene (the adsorption energy is -0.51 eV) than the counterparts of CO2 both indicate that the formation and release of HCOOH from the B-80 fullerene surface is feasible. In all, our work provides useful information for searching for an excellent metal-free photocatalyst for CO2 reduction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要