Chamber-based insights into the factors controlling epoxydiol (IEPOX) secondary organic aerosol (SOA) yield, composition, and volatility

ATMOSPHERIC CHEMISTRY AND PHYSICS(2019)

引用 38|浏览65
暂无评分
摘要
We present measurements utilizing the Filter Inlet for Gases and Aerosols (FIGAERO) applied to chamber measurements of isoprene-derived epoxydiol (IEPOX) reactive uptake to aqueous acidic particles and associated secondary organic aerosol (SOA) formation. Similar to recent field observations with the same instrument, we detect two molecular components desorbing from the IEPOX SOA in high abundance: C5H12O4 and C5H10O3. The thermal desorption signal of the former, presumably 2-methyltetrols, exhibits two distinct maxima, suggesting it arises from at least two different SOA components with significantly different effective volatilities. Isothermal evaporation experiments illustrate that the most abundant component giving rise to C5H12O4 is semi-volatile, undergoing nearly complete evaporation within 1 h while the second, less volatile component remains unperturbed and even increases in abundance. We thus confirm, using controlled laboratory studies, recent analyses of ambient SOA measurements showing that IEPOX SOA is of very low volatility and commonly measured IEPOX SOA tracers such as C5H12O4 and C5H10O3, presumably 2-methyltetrols and C5-alkene triols or 3-MeTHF-3,4-diols, result predominantly from thermal decomposition in the FIGAERO-CIMS. We infer that other measurement techniques using thermal desorption or prolonged heating for analysis of SOA components may also lead to reported 2-methyltetrols and C5-alkene triols or 3-MeTHF-3,4-diol structures. We further show that IEPOX SOA volatility continues to evolve via acidity-enhanced accretion chemistry on the timescale of hours, potentially involving both 2-methyltetrols and organosulfates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要