In Vitro and In Vivo Assessment of the Potential of Supersaturation to Enhance the Absorption of Poorly Soluble Basic Drugs

JOURNAL OF PHARMACEUTICAL INNOVATION(2019)

引用 7|浏览10
暂无评分
摘要
Purpose Delaying precipitation of weakly basic drugs in supersaturated state following their transition from the acidic gastric environment to the near-neutral proximal small intestinal fluid is emerging as a promising tactic for achieving higher transitional solubility and improving bioavailability of such drugs. The aim of this study was to assess the effect of supersaturation on drug dissolution and permeation in vitro, and to evaluate the in vitro-in vivo correlation of the supersaturation effect for the poorly soluble basic drug ketoconazole. Method We monitored dissolution of drugs in simulated gastric fluid followed by drug dissolution in simulated intestinal fluid and simultaneous permeation across Caco-2 cell monolayers using the IDAS2 experimental procedure. The pH shift from pH 1.6 to pH 6.5 (mimicking in vivo gastric to intestinal transition) was used to induce transient in vitro supersaturation of the tested weakly basic poorly soluble drugs. Polymeric precipitation inhibitor, hydroxypropyl methylcellulose acetate succinate (HPMCAS), was added to dissolution medium in order to increase the amplitude and duration of the pH-driven supersaturation of the weakly basic drug ketoconazole in the in vitro IDAS2 setting. The effect of HPMCAS on oral bioavailability of ketoconazole was demonstrated in the rat pharmacokinetic model. Results Drug supersaturation induced by pH shift was assessed in vitro by comparing drug dissolution and permeation under the 2-stage (pH shift from gastric pH 1.6 to intestinal pH 6.5) conditions vs. 1-stage (constant intestinal pH 6.5) conditions. Compared to the 1-stage conditions, 2-stage procedure increased in vitro dissolution AUC (area under the concentration-time curve) of the weakly basic drugs dipyridamole, ketoconazole, and itraconazole by 393%, 161%, and 71%, respectively, accompanied by corresponding 543%, 264%, and 46% increase in in vitro permeation. In contrast, the BCS 2 acidic drug warfarin exhibited 9% decrease in dissolution under 2-stage conditions, which was associated with a 21% decrease in permeation. None of the tested BCS 1 drugs (minoxidil and metoprolol) exhibited supersaturation after the gastric to intestinal pH shift; consistent with the absence of supersaturation, and the permeation of these drugs was not affected by the transition from simulated gastric to simulated intestinal environments. The polymeric precipitation inhibitor, HPMCAS, increased the in vitro dissolution and permeation AUC values of ketoconazole by 187% and 119%, respectively, and ketoconazole plasma AUC 0-24h and C max by 54% and 49% following oral administration in rats. Conclusion This study has shown that the novel in vitro dissolution-absorption methodology simulating the in vivo gastrointestinal environments that influence drug release and absorption of orally administered drugs constitutes a sensitive and physiologically relevant approach for investigating the potential utility of formulation excipients for exploiting supersaturation as a means to improve systemic drug absorption.
更多
查看译文
关键词
Dissolution-permeation, Drug absorption, IDAS, In vitro dissolution-absorption, Supersaturation, Caco-2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要