Decorating carbon nanosheets with copper oxide nanoparticles for boosting the electrochemical performance of symmetric coin cell supercapacitor with different electrolytes

Ceramics International(2020)

引用 34|浏览5
暂无评分
摘要
The synergetic combination of double-layer capacitor carbon nanosheets and pseudocapacitive CuO particles with enhanced electrochemical properties had been proposed. Herein, CuO/carbon nanosheets electrode material with outstanding electrochemistry performance was successfully synthesized via a low-cost and controllable strategy. Such rational architecture integrates high-conductivity carbon nanosheets with rich-chemical-activity CuO particles. The surface-functional carbon nanosheets serve as a conductive substrate, provide an efficient pathway and accelerate the fast diffusion of electrons. This electrode material depicts high specific capacitance up to 183.9 and 371.1 F g−1 at 1 A g−1 in Na2SO4 and KOH electrolyte using three-electrode tests, respectively. Moreover, two symmetric devices using this CuO/carbon nanosheets electrode material were assembled with different electrolytes. The as-fabricated device with KOH electrolyte delivers remarkable energy density of 19.36 W h kg−1 at power density of 355.6 W kg−1 and still maintains 12.06 W h kg−1 at 1750.7 W kg−1. The as-fabricated device with Na2SO4 electrolyte achieves the maximum energy density of 12.46 W h kg−1 at 355.6 W kg−1. The capacitance retention rate is maintained at 94.4% after 2000 cycles in the as-fabricated coin cell supercapacitor with Na2SO4 electrolyte, showing outstanding long-cycling life. Herein, the strategic integration of CuO particles with two-dimensional functional carbon nanosheets as the electrode material provides superior electrochemical performance for supercapacitors.
更多
查看译文
关键词
Carbon nanosheets,CuO,Energy storage,Supercapacitors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要