X-Ray Sources Using A Picosecond Laser Driven Plasma Accelerator

PHYSICS OF PLASMAS(2019)

引用 25|浏览163
暂无评分
摘要
Laser-plasma-based accelerators are now able to provide the scientific community with novel high-energy light sources that are essential to study high-energy density matter, inertial confinement fusion, astrophysical systems, and fundamental plasma physics. Due to the transient and high-density properties of these systems, it is essential to develop light sources that are in the hard x-ray energy range (0.01-1MeV) and directional and have high yield, low divergence, and short duration (ps and sub-ps). In this work, we show that by using a Laser plasma accelerator, it is possible to generate a broadband (0.01-1MeV) hard x-ray source that satisfies the previous requirements. A series of experiments were conducted on the Titan laser at the Lawrence Livermore National Laboratory where a 10 nC electron beam in the 10-380MeV energy range was generated through a laser plasma accelerator. The electrons generate x-rays via their betatron motion (few-30keV) and hard x-rays through inverse Compton scattering (10-250keV) and/or Bremsstrahlung (up to 1MeV). Due to its unique characteristics, this source can be an important tool for many applications in large-scale international laser facilities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要