A pulsed high-current plasma beam under external and self-induced magnetic confinement in a linear device

X J Zheng, F J Gou,Y Zhou, H X Wang,A C Wallace, H B Wang,Z H Huang, X Q Ji,S Y Liang, W Liu, Y T Feng, B Q Deng

PLASMA PHYSICS AND CONTROLLED FUSION(2019)

引用 2|浏览23
暂无评分
摘要
The previously developed governing equations for Magnetic Inertial Confinement Fusion, which combines the advantages of both magnetic and inertial confinement approaches, are improved to analyse a plasma beam in a linear device assisted by an external magnetic field. The equations are applied to simulate a steady state plasma beam sustained by a DC power supply as well as a transient beam generated by a separate pulsed discharge superimposed on the steady-state plasma. The calculated increase of plasma density during the pulse from the steady-state condition is compared with measurements using a laser interferometer at a relatively low voltage supply of 150 V for the pulses. The numerical and test results are found to agree within 20%. When the voltage rises, plasma instability is observed. This issue is inherent due to the use of a solid positive target electrode that blocks the plasma flow in the axial direction. As a remedy, additional tests were carried out using a hollow target electrode in a two-circuit design (to permit free gas flow in the axial direction) by replacing the DC power with transient, pulsed, high-voltage sources for plasma initiation and beam formation. These enhancements were successful in suppressing the instabilities. The peak plasma density was calculated at similar to 10(22) m(-3) for confinement times of the order of 1 ms. These results lie between the extremes for the current leading approaches yet are achieved for a more compact and inexpensive linear device.
更多
查看译文
关键词
experimental verification,self-induced magnetic confinement,linear device,magnetic inertial confinement fusion,MICF,astrophysics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要