Olefin Purification and Selective Hydrogenation of Alkynes with Low Loaded Pd Nanoparticle Catalysts

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH(2019)

引用 12|浏览5
暂无评分
摘要
The catalytic performance of Pd-nanoparticle catalysts for the selective hydrogenation of alkynes at mild conditions (150 kPa and 303 K) was evaluated. A Lindlar commercial catalyst was also tested for comparison. The effects of acidity, amount of active sites and dispersion on the catalytic activity and selectivity were studied. At mild conditions, Pd-nanoparticle catalysts were considerably more active and slightly more selective than the Lindlar catalyst. The best synthesized catalyst for the purification of 1-pentene was Pd/Al2O3-Mg (r(0) = 41.1 mol g(pd)(-1) min(-1), 94% selectivity). The activity and selectivity of Pd/CaCO3 were similar to those of the Lindlar catalyst. The smallest particle sizes (3-4.5 nm) favored the dissociative adsorption of hydrogen over Pd degrees active sites and a good catalytic behavior. The weaker acid centers (Lewis) of Pd/Al2O3-Mg and Pd/CaCO3 favored higher selectivities to the desired alkene. Pd/Al2O3 was the most active catalyst but also the least selective. This was due to strong acid sites, remnant Bronsted acid sites, which provide extra hydrogen that favors the alkyne hydrogenation rate and also the undesired overhydrogenation of the alkene and/or the isomerization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要