Compromising Flight Paths Of Autopiloted Drones

2019 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS' 19)(2019)

引用 9|浏览17
暂无评分
摘要
While more and more consumer drones are abused in recent attacks, there is still very little systematical research on countering malicious consumer drones. In this paper, we focus on this issue and develop effective attacks to common autopilot control algorithms to compromise the flight paths of autopiloted drones, e.g., leading them away from its preset paths. We consider attacking an autopiloted drone in three phases: attacking its onboard sensors, attacking its state estimation, and attacking its autopilot algorithms. Several firstphase attacks have been developed (e.g., [1]-[4]); second-phase attacks (including our previous work [5], [6]) have also been investigated. In this paper, we focus on the third-phase attacks. We examine three common autopilot algorithms, and design several attacks by exploiting their weaknesses to mislead a drone from its preset path to a manipulated path. We present the formal analysis of the scope of such manipulated paths. We further discuss how to apply the proposed attacks to disrupt preset drone missions, such as missing a target in searching an area or misleading a drone to intercept another drone, etc. Many potential attacks can be built on top of the proposed attacks. We are currently investigating different models to apply such attacks on common drone missions and also building prototype systems on ArduPilot for real world tests. We will further investigate countermeasures to address the potential damages.
更多
查看译文
关键词
counter drone, autopilot, navigation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要