Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut

NATURE MICROBIOLOGY(2019)

引用 79|浏览25
暂无评分
摘要
Sialic acid ( N -acetylneuraminic acid (Neu5Ac)) is commonly found in the terminal location of colonic mucin glycans where it is a much-coveted nutrient for gut bacteria, including Ruminococcus gnavus . R. gnavus is part of the healthy gut microbiota in humans, but it is disproportionately represented in diseases. There is therefore a need to understand the molecular mechanisms that underpin the adaptation of R. gnavus to the gut. Previous in vitro research has demonstrated that the mucin-glycan-foraging strategy of R. gnavus is strain dependent and is associated with the expression of an intramolecular trans -sialidase, which releases 2,7-anhydro-Neu5Ac, rather than Neu5Ac, from mucins. Here, we unravelled the metabolism pathway of 2,7-anhydro-Neu5Ac in R. gnavus that is underpinned by the exquisite specificity of the sialic transporter for 2,7-anhydro-Neu5Ac and by the action of an oxidoreductase that converts 2,7-anhydro-Neu5Ac into Neu5Ac, which then becomes a substrate of a Neu5Ac-specific aldolase. Having generated an R. gnavus nan- cluster deletion mutant that lost the ability to grow on sialylated substrates, we showed that—in gnotobiotic mice colonized with R. gnavus wild-type (WT) and mutant strains—the fitness of the nan mutant was significantly impaired, with a reduced ability to colonize the mucus layer. Overall, we revealed a unique sialic acid pathway in bacteria that has important implications for the spatial adaptation of mucin-foraging gut symbionts in health and disease.
更多
查看译文
关键词
ruminococcus gnavus unravels mechanisms,sialic acid metabolism pathway,bacterial adaptation,mucus-foraging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要