Prolyl Hydroxylase Inhibition Mitigates Pouchitis

INFLAMMATORY BOWEL DISEASES(2020)

引用 4|浏览36
暂无评分
摘要
Background: Pouchitis is the most common long-term complication after restorative proctocolectomy with ileal pouch-anal anastomosis (IPAA) for ulcerative colitis (UC) or familial adenomatous polyposis (FAP), which can eventually progress to pouch failure, necessitating permanent stoma construction. Hypoxia-inducible transcription factor prolyl hydroxylase-containing enzymes (PHD1, PHD2, and PHD3) are molecular oxygen sensors that control adaptive gene expression through hypoxia-inducible factor (HIF). Emerging evidence supports PHDs as being therapeutic targets in intestinal inflammation. However, pharmacological inhibition of PHDs has not been validated as a treatment strategy in pouchitis.Methods: PHD1-3 mRNA and protein expression were analyzed in mucosal pouch and prepouch ileal patient biopsies. After establishment of a preclinical IPAA model in rats, the impact of the pan-PHD small-molecule inhibitor dimethyloxalylglycine (DMOG) on dextran sulfate sodium (DSS)-induced pouchitis was studied. Clinical and molecular parameters were investigated.Results: PHD1, but not PHD2 or PHD3, was overexpressed in pouchitis in biopsies of patients with IPAA for UC but not FAP. In addition, PHD1 expression correlated with disease activity. DMOG treatment profoundly mitigated DSS-induced pouchitis in a rodent IPAA model. Mechanistically, DMOG restored intestinal epithelial barrier function by induction of tight junction proteins zona occludens-1 and claudin-1 and alleviation of intestinal epithelial cell apoptosis, thus attenuating pouch inflammation.Conclusions: Together, these results establish a strong therapeutic rationale for targeting PHD1 with small-molecule inhibitors in pouchitis after IPAA for UC.
更多
查看译文
关键词
IPAA, pouchitis, hydroxylase inhibition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要