Teaching Enzyme Catalysis Using Interactive Molecular Dynamics in Virtual Reality

JOURNAL OF CHEMICAL EDUCATION(2019)

引用 83|浏览34
暂无评分
摘要
The reemergence of virtual reality (VR) in the past few years has led to affordable, high-quality commodity hardware that can offer new ways to teach, communicate, and engage with complex concepts. In a higher-education context, these immersive technologies make it possible to teach complex molecular topics in a way that may aid or even supersede traditional approaches such as molecular models, textbook images, and traditional screen-based computational environments. In this work we describe a study involving 22 third-year UK undergraduate chemistry students who undertook a traditional computational chemistry class complemented by an additional component which we designed to utilize real-time interactive molecular dynamics simulations in VR (iMD-VR). Exploiting the flexibility of an open-source iMD-VR framework which we recently described, the students were given three short tasks to complete in iMD-VR: (1) interactive rearrangement of the chorismate molecule to prephenate using forces obtained from density functional theory calculations; (2) unbinding of chorismate from the active site chorismate mutase enzyme using molecular mechanics forces calculated in real-time; and (3) docking of chorismate with chorismate mutase using real-time molecular mechanics forces. A student survey indicated that most students found the iMD-VR component more engaging than the traditional approach, and also that it improved their perceived educational outcomes and their interest in continuing on in the field of computational sciences.
更多
查看译文
关键词
Graduate Education/Research,Biochemistry,Computer-Based Learning,Computational Chemistry,Enzymes,Molecular Biology,Nanotechnology,Theoretical Chemistry,Undergraduate Research
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要