Controlling stability and transport of magnetic microswimmers by an external field

EPL(2019)

引用 7|浏览14
暂无评分
摘要
The interplay between external field and fluid-mediated interactions in active suspensions leads to patterns of collective motion that are poorly understood. Here, we study the hydrodynamic stability and transport of microswimmers with weak magnetic dipole moments in an external field using a kinetic theory framework. Combining linear stability analysis and non-linear 3D continuum simulations, we show that for sufficiently high activity and moderate magnetic field strengths, a homogeneous polar steady state is unstable and distinct types of splay and bend instabilities for puller and pusher swimmers emerge. The instabilities arise from the amplification of anisotropic hydrodynamic interactions due to the external alignment and lead to a partial depolarisation and a reduction of the average transport speed of the swimmers in the field direction. Interestingly, at higher field strengths the homogeneous polar state becomes stable and a transport efficiency identical to that of active particles without hydrodynamic interactions is restored. Copyright (C) EFLA, 2019
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要