Terahertz Pulse Induced Transitions Between Ionic And Neutral Phases And Electronic Polarization Reversal In Ttf-Ca

PHYSICAL REVIEW B(2019)

引用 8|浏览3
暂无评分
摘要
We have investigated the terahertz (THz)-pulse-induced dynamics of tetrathiafulvalene-p-chloranil near the boundary between the ionic and neutral phases with the use of exact numerical calculations of an extended Hubbard model coupled with lattice motion. For the ionic phase, when the applied electric field of the THz pulse opposes the electronic contribution to the electric polarization (electronic polarization) (P) over bar (el) of the ground state and the maximum amplitude of electric field is greater than a threshold value, the THz-pulse excited state changes as I-A -> N -> I-B -> N -> I-A -> N -> ... (I-A ground-state case) or I-B -> N -> I-A -> N -> I-B -> N -> ... (I-B ground-state case), where N shows the neutral state, I-A (I-B) shows the ionic state with (P) over bar (el) < 0 (<(P)over bar>(el) > 0), and the phase of the bond-length alternation of I-A is opposite to that of I-B. For the neutral phase, when the maximum amplitude of the electric field is greater than a threshold value, the THz-pulse excited state changes as N -> I-B -> N -> I-A -> N -> I-B -> ... (positive electric field case) or N -> I-A -> N -> I-B -> N -> I-A -> ... (negative electric-field case). The phase transitions and electronic polarization reversal are driven by time variation of the lattice order parameter, which indicates the magnitude and phase of the bond-length alternation, and the lattice motion is induced by THz-pulse excitation through the electron-lattice coupling. Transitions between the ionic and neutral phases occur and electronic polarization reverses on a picosecond timescale together with the realizable magnitude of the THz pulse both in the ionic and neutral phases near the phase boundary.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要