Plasma Ignition And Detection For In-Situ Cleaning Of 1.3 Ghz 9-Cell Cavities

JOURNAL OF APPLIED PHYSICS(2019)

引用 3|浏览8
暂无评分
摘要
Superconducting radio frequency cavities performance preservation is crucial, from vertical test to accelerator operation. Field emission is still one of the performance limiting factors to overcome, and plasma cleaning has been proven successful by the Spallation Neutron Source (SNS), in cleaning field emitters (hydrocarbon contaminants) and increasing the work function of Nb. The cleaning for Linac Coherent Light Source-II will follow the same plasma composition adopted at SNS, which allows in situ processing of cavities installed in cryomodules. A novel method for plasma ignition has been developed at the Fermi National Accelerator Laboratory: a plasma glow discharge is ignited using high order modes to overcome limitations imposed by the fundamental power coupler. The plasma can be easily ignited and tuned in each of the cavity cells using low radio frequency (RF) power, from 100W to as low as 2W depending on the gas and pressure. A method for RF plasma detection has been developed: the plasma location is identified within the cavity without the need of cameras. The presented method can be applied to other multicell cavity designs, even for accelerators where the coupling for the fundamental modes at room temperature is very weak. (c) 2019 Author(s).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要