Electrochemical Roughening Of Thin-Film Platinum Macro And Microelectrodes

JOVE-JOURNAL OF VISUALIZED EXPERIMENTS(2019)

引用 0|浏览9
暂无评分
摘要
This protocol demonstrates a method for electrochemical roughening of thin-film platinum electrodes without preferential dissolution at grain boundaries of the metal. Using this method, a crack free, thin-film macroelectrode surface with up to 40 times increase in active surface area was obtained. The roughening is easy to do in a standard electrochemical characterization laboratory and incudes the application of voltage pulses followed by extended application of a reductive voltage in a perchloric acid solution. The protocol includes the chemical and electrochemical preparation of both a macroscale (1.2 mm diameter) and microscale (20 mu m diameter) platinum disc electrode surface, roughening the electrode surface and characterizing the effects of surface roughening on electrode active surface area. This electrochemical characterization includes cyclic voltammetry and impedance spectroscopy and is demonstrated for both the macroelectrodes and the microelectrodes. Roughening increases electrode active surface area, decreases electrode impedance, increases platinum charge injection limits to those of titanium nitride electrodes of same geometry and improves substrates for adhesion of electrochemically deposited films.
更多
查看译文
关键词
Chemistry,Issue 148,electrochemical roughening,high surface area electrode,neuromodulation,neural stimulation,microelectrode,platinum,electrical stimulation,electrophysiology,biosensor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要