Current Status and Future Prospects of the SNO

S. Andringa, E. Arushanova, S. Asahi,M. Askins,D. J. Auty,A. R. Back, Z. Barnard,N. Barros,E. W. Beier, A. Bialek, S. D. Biller, E. Blucher, R. Bonventre,D. Braid, E. Caden, E. Callaghan,J. Caravaca,J. Carvalho,L. Cavalli,D. Chauhan,M. Chen, O. Chkvorets,K. Clark,B. Cleveland,I. T. Coulter,D. Cressy, X. Dai, C. Darrach,B. Davis-Purcell, R. Deen, M. M. Depatie, F. Descamps,F. Di Lodovico, N. Duhaime,F. Duncan,J. Dunger,E. Falk, N. Fatemighomi,R. Ford,P. Gorel,C. Grant,S. Grullon,E. Guillian,A. L. Hallin,D. Hallman,S. Hans,J. Hartnell,P. Harvey,M. Hedayatipour, W. J. Heintzelman,R. L. Helmer, B. Hreljac,J. Hu,T. Iida,C. M. Jackson, N. A. Jelley, C. Jillings, C. Jones,P. G. Jones,K. Kamdin,T. Kaptanoglu,J. Kaspar, P. Keener, P. Khaghani,L. Kippenbrock,J. R. Klein, R. Knapik, J. N. Kofron,L. L. Kormos,S. Korte,C. Kraus,C. B. Krauss,K. Labe,I. Lam,C. Lan,B. J. Land,S. Langrock,A. LaTorre,I. Lawson,G. M. Lefeuvre, E. J. Leming,J. Lidgard, X. Liu,Y. Liu,V. Lozza,S. Maguire,A. Maio,K. Majumdar,S. Manecki,J. Maneira, E. Marzec,A. Mastbaum, N. McCauley,A. B. McDonald,J. E. McMillan, P. Mekarski,C. Miller, Y. Mohan,E. Mony,M. J. Mottram,V. Novikov,H. M. O’Keeffe,E. O’Sullivan,G. D. Orebi Gann, M. J. Parnell,S. J. M. Peeters, T. Pershing, Z. Petriw,G. Prior,J. C. Prouty,S. Quirk,A. Reichold,A. Robertson,J. Rose,R. Rosero, P. M. Rost,J. Rumleskie,M. A. Schumaker, M. H. Schwendener,D. Scislowski,J. Secrest,M. Seddighin,L. Segui,S. Seibert, T. Shantz, T. M. Shokair,L. Sibley,J. R. Sinclair,K. Singh, P. Skensved,A. Sörensen,T. Sonley,R. Stainforth,M. Strait, M. I. Stringer,R. Svoboda, J. Tatar,L. Tian, N. Tolich,J. Tseng,H. W. C. Tseung,R. Van Berg,E. Vázquez-Jáuregui, C. Virtue,B. von Krosigk,J. M. G. Walker,M. Walker, O. Wasalski, J. Waterfield,R. F. White,J. R. Wilson,T. J. Winchester,A. Wright,M. Yeh,T. Zhao,K. Zuber

ADVANCES IN HIGH ENERGY PHYSICS(2016)

引用 168|浏览56
暂无评分
摘要
SNO+ is a large liquid scintillator-based experiment located 2 kmunderground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0 nu beta beta) of Te-130. In Phase I, the detectorwill be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of Te-130, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0 nu beta beta Phase I is foreseen for 2017.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要